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We describe a new type of quasiperiodic optical lattice, created by a physical realization of the
abstract cut-and-project construction underlying all quasicrystals. The resulting potential is a
generalization of the Fibonacci tiling. Calculation of the energies and wavefunctions of ultracold
atoms loaded into such a lattice demonstrate a multifractal energy spectrum, a singular continuous
momentum-space structure, and the existence of controllable edge states. These results open the
door to cold atom quantum simulation experiments in tunable or dynamic quasicrystalline potentials,
including topological pumping of edge states and phasonic spectroscopy.
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Quasiperiodicity has a profound impact on electronic
structure, playing a role in phenomena ranging from the
quantum Hall effect to quasicrystalline ordering. How-
ever, the formation, stability, excitation, and electronic
structure of quasiperiodically ordered systems remain in-
completely understood. Open questions include the na-
ture of electronic conductivity or diffusivity, the spec-
tral statistics, the nature of strongly correlated magnetic
states on a quasicrystalline lattice, topological proper-
ties of quasicrystals, and even the shape of the electronic
wavefunctions [1–9].

The exquisite controllability of cold atoms makes them
a natural choice for experimental investigation of the
open questions regarding quasiperiodicity. Unique fea-
tures of such experiments would include precisely variable
quasiperiodic parameters, tunable interactions, bosonic
or fermionic quantum statistics, and the ability to study
dynamical phenomena (in modulated or quenched sys-
tems, e.g.). Numerous theoretical proposals have ex-
plored the rich physics of quasiperiodically trapped cold
atoms [9–24]. However, with the exception of some
early experiments on non-degenerate atomic gases in 2D
quasiperiodic lattices [25, 26], the dominant application
of quasiperiodic or incommensurate potentials in cold
atomic physics thus far has been as a convenient proxy
for disorder [27, 28, e.g.]. The realization of tunable
quasicrystalline potentials for cold atoms would open up
a broad range of exciting experiments, complementary
to those possible with synthesis and characterization of
solid-state or photonic quasicrystals.

In this paper, we describe and elucidate the proper-
ties of a “generalized Fibonacci” optical lattice which
creates a dynamically tunable family of 1D quasicrys-
tals. This lattice, a generalization of the well-known Fi-
bonacci tiling, physically realizes the abstract cut-and-
project construction which underlies all quasicrystals.
Every quasiperiodic tiling can be defined as a projection
of a cut through a lattice which is fully periodic (i.e. crys-
talline) but exists in a higher dimensional space [29, 30].
For example, the Fibonacci tiling is a projected 1D cut

FIG. 1. The generalized Fibonacci optical lattice. Top: Di-
agram of cut-and-project construction of the generalized Fi-
bonacci lattice. A 2D strip at a particular angle α is pro-
jected down to a line. If tan(α) = 1/τ ≡ 2/(1 +

√
5), this

results in the Fibonacci tiling itself; a different irrational
slope creates a different 1D quasicrystal. Bottom: Calcu-
lated potential of a Fibonacci optical lattice with parameters
discussed in text (red is deeper), showing Fibonacci sequence
τ1ττ1τ1ττ1ττ1τ1τ ... of lattice spacings.

from a 2D square lattice, and the Penrose tiling can
be constructed as a projected 2D cut through a 5D
crystalline lattice. In these and all other quasicrystals,
the hidden degrees of freedom in the higher-dimensional
space give rise to unconventional Bragg diffraction, pha-
sonic excitations, and topologically nontrivial phemom-
ena [5, 31, 32]. Generalized Fibonacci optical lattices
will provide a flexible platform for realization of tunable
quantum quasicrystals, and should enable direct exper-
imental investigation of questions inaccessible to exper-
iments on static, non-tunable, non-interacting systems.
Specific topics of interest include studies of edge states,
adiabatic quantum pumping, multifractal energy spectra,
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phasonic spectroscopy, dynamical signatures of many-
body localization, and transport in quasicrystals.

The generalized Fibonacci optical lattice is constructed
as a direct real-space realization of the cut-and-project
procedure, by intersecting an elongated optical trap at a
tunable angle with a large-period square lattice, as dia-
grammed in Fig. 1. The resulting potential is the sum of
two simple red-detuned trap potentials: the large-period
square optical lattice, with potential

VL(x, y) = −AL sin2

(
2πx

λL

)
−AL sin2

(
2πy

λL

)
,

and the elongated cutting beam at an angle α to the x
axis, with potential

VC(x, y) = −AC exp

[
−2

(
−x sin(α) + y cos(α)

ω0

)2
]
.

Here AL is the depth of the square lattice, λL/2 = a
is the lattice constant, AC is the trap depth of the
cutting beam, ω0 is the beam waist, and we have as-
sumed a Rayleigh range long compared to the trapping
region. The natural energy scale is the recoil energy
ER = h2/2mλ2

L. The total potential is then U(x, y) =
VL(x, y) + VC(x, y, α). This potential is shown in Fig. 1
for tan(α) = 2/(1 +

√
5), and AC = 10AL. In order

for the total physical potential to be a good approxima-
tion to a true cut-and-project potential, AC/AL must
be sufficiently large that we can spectrally distinguish
states along the cutting beam from transversely-extended
states. To preserve the 1D character of the potential, the
waist of the cutting beam should not be large compared
to the lattice constant a; however, the calculations pre-
sented below indicate that the potentials retain many of
their interesting quasiperiodic properties even if this con-
dition is violated. A perturbative treatment elucidating
the quasiperiodic character of the effective potential is in-
cluded in the supplementary material to this paper. This
trap construction can be generalized in a straightforward
way to 2D quasiperiodic traps, via intersection of a light
sheet with a 3D large-period lattice. This direct exper-
imental realization of the simplest quasiperiodic lattices
is also intrinsically tunable: variation of the intersection
angle α tunes the properties of the resulting potential,
generating different members of this family of quasicrys-
tals, and variation of the offset transverse to the cut beam
axis drives phasonic degrees of freedom [33].

We now briefly discuss the practical optics required to
realize such a potential. If the cutting beam is produced
by focusing a gaussian beam of initial diameter D with a
lens of focal length F , the number of lattice sites in one
Rayleigh range of the beam is given approximately by

N‖ =
16

π

λC
λL

(
F

D

)2

,

where λC is the wavelength of the cutting beam and λL
is twice the lattice period. Even if these traps are pro-
duced by the same laser, λC/λL can be varied by using an
angled-beam lattice configuration. The number of lattice
sites spanning the cutting beam width is

N⊥ =
8

π

λC
λL

(
F

D

)
,

so the aspect ratio of the full trap is N‖/N⊥ = 2F/D.
With typical values of F and D, one can then real-
ize a range of generalized Fibonacci traps, with widths
ranging from less than a lattice constant to many lat-
tice constants. The ends of such a trap can be de-
fined for example by tightly-focused blue-detuned light
sheets. The intersection angle α is most easily tuned by
rotating the lattice itself; for angled-beam lattices cre-
ated using a diffractive optical element, this could be
straightforwardly achieved with a single rotation stage.
As with ordinary optical lattices, adiabatic loading of
cold atoms into a Fibonacci-type lattice would be ac-
complished starting from the elongated optical trap by a
slow turn-on of the lattice potential.

Using this trap geometry, one can construct a contin-
uous family of quasiperiodic tilings of the line by placing
the cutting beam at any irrational slope. In particu-
lar, if the angle of intersection α satisfies the relationship
tan(α) = 1/τ where τ is the golden mean (1 +

√
5)/2,

then the resulting potential will approximate the Fi-
bonacci tiling. This one-dimensional structure tiles the
line quasiperiodically, exhibits sharp diffraction peaks,
and can also be generated algebraically using the defla-
tion rule τ → τ1, 1→ τ , which gives rise to the sequence
(1, τ , τ1, τ1τ , τ1ττ1, τ1ττ1τ1τ , τ1ττ1τ1ττ1ττ1...). As
the bottom panel of Fig. 1 demonstrates, the energy
minima of the Fibonacci optical lattice are spaced ac-
cording to the Fibonacci tiling. Because of the defla-
tion symmetry associated with the Fibonacci tiling, if
the width of the cut-out strip is reduced, then the re-
sulting one-dimensional projection will simply be an ex-
panded and displaced version of the Fibonacci tiling [34].
In the generalized Fibonacci optical lattice, as the width
of the Gaussian cutting beam is increased, the poten-
tial no longer approximates a one-dimensional projection,
but remains quasiperiodic. The connection to a mathe-
matically exact cut-and-project lattice and the quasiperi-
odicity of the potential emerge clearly from a perturba-
tive treatment, which also makes plain the connection to
closely related systems such as the Aubry-André model.
Details of such a perturbative treatment appear in the
supplementary material. This general optical technique
for construction of a family of quasiperiodic lattices and
their rational approximants is the first main result of this
work.

The second main result of this work is the calcula-
tion of the energy spectra and wavefunctions of non-
interacting atoms trapped in this family of tunable qua-
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FIG. 2. Energies and wavefunctions in a tunable Fibonacci-
type potential. a: A portion of the energy spectrum of the
generalized Fibonacci optical lattice as a function of cut angle.
Here a = 1, AL = 5/π2, AC = 5AL, w0 = 1. Color of points
corresponds to center-of-mass of probability density, to enable
identification of edge states. b: 2D Probability density versus
position at the indicated cut angle and energy (a typical bulk
state). Red regions correspond to higher probability density.
c: 2D probability density versus position at the indicated cut
angle and energy (a typical edge state). Both b and c show
a region of 4 by 200 lattice constants.

sicrystalline potentials. These calculations demonstrate
the utility of generalized Fibonacci optical lattices as
a tool for the investigation of quasiperiodic quantum
phenomena. To determine the energy spectrum of the
physically-realized trap, we solved the two-dimensional
single-particle Schrodinger equation on a mesh with spac-
ing much smaller than a lattice constant. This approach
avoids simplifications inherent in the tight-binding ap-
proximation, and makes closer contact with experimen-
tally realizable traps. We did not use periodic boundary
conditions, both for more direct comparison with real ex-
periments and so as to accurately model the existence of
edge states at the ends of the quasicrystal. Energy eigen-
values as a function of cutting beam angle are shown in
Fig. 2. The calculated spectrum has a complex multifrac-
tal appearance [35]. Notable features include a hierarchy
of minigaps which disperse as the angle is varied, a non-
accidental resemblance to the Hofstadter butterfly, and
the existence of isolated states in the gaps. We find that
the qualitative structure of the energy spectrum remains
the same if the waist of the Gaussian beam is increased to
several times the size of the lattice constant. The resem-
blance to the Hofstadter butterfly is to be expected, given
the recent demonstration that the generalized Fibonacci
quasicrystal and the Harper model of high-magnetic-field
2D integer quantum Hall states are topologically equiv-
alent [36, 37]. The intersection angle α of the Fibonacci

FIG. 3. Tunable quasicrystals in momentum space. Main
lower panel shows Fourier transform of the ground state prob-
ability density along the direction of the cutting beam, as
a function of cut angle α. Note the logarithmic scale on
the colorbar. Upper panels show log of Fourier transform
amplitude versus wavevector at a cut angle of π/4 (top)
and tan−1(2/(1 +

√
5)) (bottom), with identical axis limits.

Dashed lines show expected wavevectors of Fourier peaks of
the potential based on the second-order perturbation theory
described in the supplementary material. Calculations were
performed on a mesh 4 by 200 lattice constants in size. Faint
vertical lines in main plot are finite-size edge effects.

quasicrystal plays a role analogous to that of the modula-
tion period of the Harper lattice, or the effective magnetic
field in the quantum Hall system.

The wavefunctions of atoms in generalized Fibonacci
optical lattices also possess unique characteristics. As
the cut angle α is varied, the Fourier transform of the
projected spatial probability density of the ground state,
plotted in Fig. 3, shows for irrational tan(α) a rich sin-
gular continuous structure characteristic of quasiperiodic
structures. This property is the 1D analogue of the for-
bidden Bragg diffraction patterns by which 3D quasicrys-
tals were first discovered [38], and recalls the definition
of a quasicrystal as a structure which produces a sharply
peaked diffraction pattern but lacks translational sym-
metry. The singular continuous nature of the spectrum
also emerges naturally from a perturbative treatment of
the effective potential (see supplementary material for de-
tails). Rational tan(α) = p/q produces a crystalline su-
perlattice with a periodicity which depends upon q. The
real-space structure of a typical squared wavefunction in
a Fibonacci optical lattice is shown in Fig. 2b. In ad-
dition to extended bulk states, isolated states traversing
the band gaps are visible in Fig. 2a. Fig. 2c shows the
squared wavefunction of a typical gap-traversing state,
located inside the lowest energy band gap, and demon-
strates that the wavefunction is localized towards one
edge of the lattice. The precise topological nature of
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such edge states is currently under debate [5–7, 9], but
in any case they are interesting candidates for realizing
topological pumping.

Topological pumping is possible because the wavefunc-
tions and energy spectra of the generalized Fibonacci op-
tical lattice depend in a non-trivial way on the offset of
the cutting beam with respect to the lattice. In the ter-
minology of quasicrystals, this offset is a phasonic degree
of freedom. Just as phonon modes arise from discretely
broken real-space translation symmetry, phason modes
arise from broken translation symmetry in the higher-
dimensional space from which a quasiperiodic lattice is
projected [31, 33, 39]. In a Fibonacci-type optical lattice,
this corresponds to symmetry under relative translation
of the cut beam and the lattice in a direction transverse
to the cut beam. A visualization of the effects of contin-
uous adiabatic phasonic driving in the Fibonacci optical
lattice is shown in Fig. 4. As the offset of the cutting
beam is varied from 0 to 1 lattice constants, an edge state
at the right-hand side of the sample with energy in the
minigap decreases in energy, merges with the lower band,
and later emerges as a left edge state. These calculations
show that adiabatic ramping of the offset can produce a
long-range, quantized, oscillatory mass current in a gen-
eralized Fibonacci optical lattice. The effect does not
depend on irrationality of the cut slope. This mass cur-
rent could be detected, for example, by preferential load-
ing of the edge states in a large-period lattice and direct
imaging. Related effects have recently been observed in
photonic waveguide lattices [5, 40], and recent theoretical
work indicates that bulk Wannier states can be pumped
in a similar way in superlattice potentials [41]. The cold
atom context, uniquely, would enable realization of topo-
logical pumping in the presence of tunable interactions,
and with variable adiabaticity. Such experiments would
represent a controllable realization of Thouless pump-
ing [42], and could provide a powerful tool for dynamical
topological control of atomic wavefunctions.

The availability of the “hidden dimension” quite natu-
rally allows us to investigate another aspect of quasicrys-
talline physics: the role of their soft modes. While of
course the optical lattice potentials here are externally
imposed and hence do not have true dynamical Gold-
stone modes, we may simulate the effects of phonons and
phasons by suitable manipulations of the lattice and cut-
ting lasers: for instance, shaking the lattice parallel or
transverse to the cut corresponds to driving a phonon or
a phason, respectively. Phasons have important but in-
completely understood effects on thermal and electronic
transport in real quasicrystals [43]. This is of interest not
only for fundamental reasons, but also because of poten-
tial technological applications of quasicrystals’ anoma-
lous electrical and thermal transport characteristics. The
influence of phasons is not understood in large part be-
cause of the experimental difficulty of disentangling the
effects of domain walls, crystalline impurities, and disor-

FIG. 4. Edge state topological pumping by phason driving.
Top: Energy states near the first minigap versus offset of cut-
ting beam along a lattice vector, at the Fibonacci cut slope.
As the offset between the lattice and the cut beam is varied,
left and right edge states cross the gap. Coloring of points
indicates center of mass, with the same mapping as Fig. 2.
Bottom: Variation of spatial probability amplitude of an
initial edge state as offset is adiabatically varied. Position is
normalized to 0 at the left edge and 1 at the right edge.

der from those due to phason modes. A unique aspect
of the generalized Fibonacci optical lattice is that it en-
ables direct oscillatory driving of phason modes. Mea-
suring the response of the system to driving such modes
at variable frequency would constitute a new kind of lat-
tice modulation spectroscopy, in which the modulation
occurs in the higher-dimensional space from which the
quasiperiodic lattice is projected. This capability, im-
possible in other quasiperiodic systems, should allow un-
precedentedly specific investigation of phason physics.

In conclusion, we have described a novel type of
tunable quasiperiodic optical lattice, presented calcu-
lations of the properties of quantum gases in such a
trap, and shown that this generalized Fibonacci optical
lattice will enable experimental realization of topologi-
cal pumping and phason spectroscopy. Artificial qua-
sicrystals such as those we propose allow the explo-
ration of arbitrary quasiperiodic geometries, unrestricted
by the laws of chemistry. Creation of a fully tunable
quantum quasicrystal would open the door to a large
range of exciting experiments beyond those discussed
here, including extensions of these techniques to higher-
dimensional quasiperiodic lattices. The proposed real-
ization of the cut-and-project construction allows tuning
across the dimensional crossover from periodic 2D lattices
to quasiperiodic 1D chains, enabling direct investigation
of descendant quasiperiodic phases of well-studied corre-
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lated 2D systems. The unique tools of atomic physics
can also enable new types of experiments: Feshbach tun-
ing of the scattering length would allow exploration of
the poorly understood role of interactions in quasicrys-
tals [44], and time-varying potentials would enable dy-
namical experiments impossible in static lattices, such
as phason spectroscopy. Experiments on quasiperiodic
optical potentials may ultimately prove complementary
to synthesis and characterization of solid and photonic
quasicrystals, and could open another conceptual angle
of attack on the problem of designing and predicting the
properties of these complex materials.
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SUPPLEMENTARY MATERIAL FOR “FIBONACCI OPTICAL LATTICES FOR TUNABLE QUANTUM
QUASICRYSTALS”

Effective One-Dimensional Model for Harmonic Lattices

In this section, we describe how we may construct systematically more accurate approximations of the effective
one-dimensional potential for atomic motion parallel to the cut, order-by-order in perturbation theory. Our notation
follows that in the main text. As a first step, we approximate the cutting beam potential VC at leading order as a
harmonic well,

VC(x, y) = −ACe
−2

(
r⊥
ω0

)2

= −AC + 2AC

(
r⊥
ω0

)2

+O

((
r⊥
ω0

)4
)
≈ −AC +

1

2
mω2
⊥r

2
⊥ (1)

where we have defined ω⊥ =
√

4AC

mω2
0
.

We now perform a rotation of the coordinate system, (x, y)→ (r⊥, r‖). In the new coordinates, the Hamiltonian is
(ignoring an unimportant constant)

H =
p2
⊥

2m
+

p2
‖

2m
+ VC(r⊥) + VL(r⊥, r‖) (2)

where

VL(r⊥, r‖) = −AxL sin2

(
2π

λL

(
r‖ cosα− r⊥ sinα

))
−AyL sin2

(
2π

λL

(
r‖ sinα+ r⊥ cosα

))
(3)

is the 2D periodic lattice potential written in the rotated coordinate system. Note that we have allowed for anisotropic
x- and y- coefficients; this will be relevant to the tunability of the lattice, discussed below. Assuming that AL � AC ,
we first solve for the exact eigenstates of the trap potential (the ‘subbands’, to borrow terminology from semiconductor
physics); we will then compute the effects of the lattice potential on these eigenstates via perturbation theory. First,
we write

H = H0 +H1 (4)

where

H0 =
p2
⊥

2m
+ VC(r⊥) and H1 =

p2
‖

2m
+ VL(r⊥, r‖). (5)

H0 has exact eigenstates ψn(r‖, r⊥) of the form

ψn(r‖, r⊥) = χfree(r‖)φn(r⊥), (6)

where φn(r⊥) is an exact eigenstate of the harmonic motion along r⊥:[
p2
⊥

2m
+ VC(r⊥)

]
φn(r⊥) = εnφn(r⊥), with εn =

(
n+

1

2

)
h̄ω⊥, (7)

and χfree is any function. Note that we have deliberately chosen to include the kinetic energy along r‖ as part of the
perturbation H1, as this simplifies the calculations.

Next, we add in the effects of the r‖ dispersion and the lattice potential VL. From (3), we see that VL mixes
the transverse and longitudinal motion. It is convenient to account for this by computing corrections to an effective
potential for the longitudinal motion Veff(r‖) order-by-order in perturbation theory. In other words, we restrict
the transverse motion to a specified subband (here, we take n = 0 for specificity, but similar arguments apply,
mutatis mutandis, for any n) and compute corrections due to virtual fluctuations to higher subbands order-by-order
in perturbation theory.

For the case of the n = 0 subband, by a straightforward calculation, this approach yields an effective Hamiltonian
for motion along r‖,

Heff =
p2
‖

2m∗
+ Veff(r‖) (8)
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with m∗ the effecrive mass and

Veff(r‖) = V 00
L (r‖)−

∑
n>0

V 0n
L (r‖)V

n0
L (r‖)

nh̄ω⊥
+O

(
‖VL‖3

(h̄ω⊥)2

)
. (9)

In the above expression, we have introduced a shorthand for the inter-subband matrix elements of the lattice potential,

V lnL (r‖) ≡
∫
dr⊥ φ

∗
l (r⊥)VL(r‖, r⊥)φn(r⊥). (10)

It is evident that the perturbative expansion is controlled by the ratio ‖VL‖
(h̄ω⊥) ≈

AL

h̄ω⊥
of the inter-subband matrix

elements to the subband splitting. This parameter is straightforwardly tunable in the proposed optical realization
of the generalized Fibonacci lattice. Note that the effective mass will be corrected at higher orders of perturbation
theory, and that we may need to be careful about degeneracies introduced at higher orders; a complete analysis
of the perturbation theory is beyond the scope of the present work. However, some key qualitative features of
the perturbative series, modulo these possible complications, may be extracted simply by studying the form of the
perturbation series, as we show in the next section.

Fourier Analysis of Effective Potential

We now turn to an analysis of Fourier components of the effective potential Veff. Consider the V00 term. Since
there is a single occurrence of VL at this order, we see that its Fourier transform with respect to r‖ will contain only
the harmonics present in VL. It is easy to see that at this order, the Fourier transform has Bragg peaks only at
G ∈ {±K,±K ′}, where K = 4π

λL
cosα and K ′ = 4π

λL
sinα (throughout, we ignore G = 0 peaks as they correspond to

an unimportant uniform offset of the energy). The corresponding Veff consists of a pair of harmonics whose minima
are respectively at lattice spacings of λ = λL

2 cosα and λ′ = λL

2 sinα . For tanα = 2/(1 +
√

5) = τ−1, the ratio of these
spacings is indeed the golden ratio, λ′/λ = τ . It is also straightforward to show that the relative amplitudes of the

Bragg peaks is given by V±K ∝ AxLe−
1
4 (Kξ)2 , V±K′ ∝ AyLe−

1
4 (K′ξ)2 , where ξ =

√
h̄/mω⊥ is the characteristic ‘oscillator

length’ of the trap potential.
At second order, we have two occurrences of VL in Veff, leading to Bragg scattering at wavevectors G ∈ {±K ±

K ′,±2K,±2K ′}, with the signs all chosen independently. The relative amplitudes between these peaks are trickier
to evaluate analytically, but may be readily computed numerically as needed; however, from the fact that these peaks

only emerge at second order, they are accompanied by a factor of ∼ A
x/y
L e−G

2ξ2/4,with x or y chosen according to
whether we obtain G from the leading peaks by adding K or K ′, respectively.

We see that we recover a complicated sequence of Bragg peaks as we go to higher orders in perturbation theory. At
each order we will find Bragg peaks at higher harmonics, but these will be correspondingly at suppressed amplitude.
Generalizing the line of reasoning above, we see that perturbation theory up to order N yields a set of Bragg peaks

G ∈ {mK + nK ′ where m,n are integers with |m|+ |n| = N} (11)

with amplitude fG ∼
(Ax

L)|m|(Ay
L)
|n|

(h̄ω⊥)|m|+|n|−1 exp
[
− 1

4ξ
2 (mK + nK)

2
]
.

The above discussion should make it evident that, at least in principle, the Fourier transform of Veff is characterized
by a singular continuous spectrum, as long as the cut angle is such that tanα is irrational: in this case, there is
no algebraic relation between K,K ′, and thus the set {mK + nK ′, m,n∈ Z} has no smallest vector. However, as
computed above, and commented on in more detail below, many peaks for large |m|, |n| will have extremely small
amplitudes and are for practical purposes absent. Nevertheless, this demonstrates that the generalized Fibonacci
optical lattice is strictly more quasicrystalline than the bichromatic potentials created to date, and should be sufficient
to explore a variety of relevant physical questions.

Comparison to ‘Classical’ Cut-and-Project

The quick decay of Bragg peak amplitudes at higher orders is a consequence of the single-harmonic form of the lattice
potential and the ‘soft’ projection imposed by the Gaussian beam. Traditional treatments of quasicrystals (see, e.g.
[34]) differ from this in two ways: (i) they discuss a multiple-harmonic lattice, such as the one produced by a periodic
delta-function array; and (ii) they incorporate a singular cut (for instance, a step function). As the quasicrystalline
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FIG. 5. Fourier spectrum of effective 1D potential. The semi-logarithmic plot shows the relative amplitudes of Bragg peaks
in ER produced by perturbation theory up to second order. We have assumed Ax

L = Ay
L. Note that this is the analytically

obtained Fourier transform of the potential itself, rather than the numerically obtained Fourier transform of the atomic density,
which is shown in Fig. 3 of the main text.

potential is the product of these, the Fourier spectrum of the resulting 1D quasicrystal is obtained by convolving the
Fourier transform of the lattice, which consists of equal-amplitude peaks at reciprocal lattice vectors, with the slowly
decaying Fourier spectrum of a step function (the slow decay is a consequence of the step-edge singularity). The
resulting Bragg peaks have an amplitude that decays very slowly (as a power law) with their wavevector. Although
this slow decay is known to play an important role in d = 3 quasicrystals [45], we note that our approach nevertheless
retains the dominant features of quasiperiodicity, namely a set of incommensurate Bragg peaks. Indeed, even purely
bichromatic lattices are known to have a localization-delocalization transition.

As a final comment, observe that the leading term in our perturbative approach is a direct transcription of cut-
and-project: we could have obtained this by convolving the harmonic potential with the Gaussian that describes the
atomic density transverse to the cut axis (this is the ‘tube’ that the harmonically confined atoms are restricted to.)
However, the higher-order terms (that generate higher Bragg peaks) are in fact non-classical: they emerge due to
virtual fluctuations, and have no classical analogue. (Note that a corollary of the previous observation is that the
strength of higher-order Bragg peaks may be enhanced by the inclusion of higher harmonics in VL, as these would
then contribute already at leading order.)

Relation to Aubry-André Potential

A key feature of our set-up is the inherent tunability afforded by the cut-and-project approach. As an example, we
sketch a prescription of how to achieve the Aubry-André limit in the cut-and-project approach. To do this, we exploit
the ability to impose an anisotropic lattice potential in two dimensions. In the limit AyL = 0, we simply have a stripe
modulation in 2D. The effective 1D potential is periodic, with spacing given by λL/ cosα. For a strong Gaussian
beam AC � AxL, we can restrict ourselves to leading order in perturbation theory, so that it suffices to consider the
leading harmonic of this 1D potential, with strength V0 ∝ V±K ∝ AxL (here and below, we have ignored factors of
O(1) as we are interested in the scaling rather than precise numerical factors). Assuming a relatively deep lattice, we
may approximate the projected 1D lattice by a tight-binding chain: in second-quantized form, we have

Heff ≈ −J
∑
i

(
b†i bi+1 + b†i+1bi

)
− µ

∑
i

b†i bi (12)

with a hopping matrix element (using standard techniques, [46])

J ≈ 4√
π
ER

(
V0

ER

)3/4

exp

[
−2

(
V0

ER

)1/2
]

(13)

where ER is the effective 1D recoil energy (this is proportional to the recoil energy of the 2D lattice, but as is the
case for other quantities, may differ by factors of O(1) due to the projection.)

Next, we impose a weak periodic potential in the y direction, by allowing AyL 6= 0. If we assume that AxL �
AyL � (AxL)2/h̄ω⊥, we may simply consider the additional contribution to the effective potential due to AyL as a
weak perturbation to the dominant contribution due to AxL (while still ignoring transitions to higher subbands of the
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trapping beam). This additional contribution comes from harmonics at K ′ = K tanα, with strength V1 ∝ V±K′ ∝ AyL.
Since AxL � AyL, this may be incorporated as a weak onsite modulation to the 1D tight-binding Hamiltonian,

Heff ≈ −J
∑
i

(
b†i bi+1 + b†i+1bi

)
+
∑
i

(−µ+ V1 cos(K ′ri))b
†
i bi, (14)

which is equivalent to that of the Aubry-André model with a phase offset of zero. We may recover the full Aubry-André
model by also including an offset phase in the AyL term of Eq.(3).
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