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We suggest and analyze a new scheme to adiabatically cool bosonic atoms to picokelvin tempera-
tures which should allow the observation of magnetic ordering via superexchange in optical lattices.
The starting point is a gapped phase called the spin Mott phase where each site is occupied by
one spin-up and one spin-down atom. An adiabatic ramp leads to an xy-ferromagnetic phase. We
show that the combination of time-dependent density matrix renormalization group methods with
quantum trajectories can be used to fully address possible experimental limitations due to deco-
herence, and demonstrate that the magnetic correlations are robust for experimentally realizable
ramp speeds. Using a microscopic master equation treatment of light scattering in the many-particle
system, we test the robustness of adiabatic state preparation against decoherence. Due to different
ground-state symmetries, we also find a metastable state with xy-ferromagnetic order if the ramp
crosses to regimes where the ground state is a z-ferromagnet. The bosonic spin Mott phase as
the initial gapped state for adiabatic cooling has many features in common with a fermionic band
insulator, but the use of bosons should enable experiments with substantially lower initial entropies.

PACS numbers: 37.10.Jk, 67.85.Hj, 42.50.-p, 03.65.Yz

A major goal in the field of ultracold atoms is to
reach picokelvin temperatures in optical lattices and ob-
serve new spin-ordered quantum phases [1, 2]. Such low
temperatures are necessary due to the smallness of su-
perexchange (second order tunneling) matrix elements [3]
which determine the transition temperature to magneti-
cally ordered phases [4–6]. The current strategy is to cool
atoms by evaporative cooling, and then continue with
some form of adiabatic cooling. Adiabatic processes can
dramatically lower the temperature of a system, if exter-
nal parameters are slowly varied with respect to the level
spacing between excited states of the system [5, 7–13].
Since adiabatic processes conserve entropy, one should
select an initial state which can be prepared with very
low entropy.

The use of adiabatic ramps starting from a band insula-
tor of fermionic atoms has been proposed for production
of a variety of states [8–11]. These involve a ramp from
states with a large gap that can be prepared with low en-
tropy to a state with a much smaller gap, and often spin-
ordering, generally making use of a superlattice potential
to delocalize the atoms and select filling factors. For re-
alisation of ordered states, bosonic atoms could provide
significant advantages because evaporative cooling allows
for the realisation of much lower entropies for bosons
than for fermions [1]. However, it has been difficult to
find an equivalent of the band insulator state that can
be straight-forwardly realised in an experiment. Here,
we show that the spin Mott state in a two-component
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FIG. 1: Setup for adiabatic preparation of magnetic states –
(a) Two-component bosons on a single lattice site with oc-
cupation number two and strong interactions can be repre-
sented as three different spin-1 states. (b) When the inter-
component interaction UAB is negligible compared to the
intra-component interaction U , the ground state of the system
corresponds to a spin Mott state, for UAB . U to a planar
xy-ferromagnetic state. (c) Spin-dependent lattices can be
used to adibatically tune the system from a spin Mott state
to an xy-ferromagnetic regime.

bosonic system [4, 14–18] can play the role of the band
insulator for the fermionic system, and that it can be
prepared with low entropy from two independent Mott
insulators in spin-dependent lattices [19–22]. Using the
control offered by such lattices, we can vary the inter-
component interactions, and produce a ramp into a state
of xy-ferromagnetism, driven by a spin-exchange term
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[14–16] (see Fig. 1). Using time-dependent density ma-
trix renormalization group techniques (t-DMRG) [23–26]
we show that this produces a state with high fidelity for
realistic timescales in the experiment. A key question in
all adiabatic preparation schemes is whether they can be
robust in the presence of noise and dissipation. Due to
the near-resonant nature of the spin-dependent lattice,
light scattering is the limiting factor in this scheme [27–
30]. We compute the dynamics incorporating a micro-
scopic treatment of the corresponding decoherence, and
show that the magnetic order is surprisingly robust. This
paves the way towards realisation of quantum magnetic
order with ultracold atoms in an optical lattice.

Low entropy bosons on a lattice – Bosons have ad-
vantages for reaching very low temperatures since the
entropy S/N per particle S/NkB = 3.6(T/Tc)

3 drops
rapidly for temperatures T below the BEC transition
temperature Tc, and for almost pure condensates be-
comes almost unmeasurably small, of order 0.05. Mag-
netic ordering typically requires entropies below ln(2) =
0.69. In contrast, for fermions, the entropy below the
Fermi temperature TF is linear in temperature, S/NkB =
π2(T/TF ) and values of 0.5 are typically reached at
T/TF = 0.05. Loading atoms into an optical lattice re-
duces the temperature (since this increases the effective
mass), but leaves the total entropy constant. However, if
a gapped phase is formed in the center of a harmonic
trapping potential – a band insulator for fermions or
Mott insulator for bosons – then the entropy will accumu-
late at the edge of the cloud. Single-site imaging showed
that Mott shells with one atom per site can have less than
1% defects, with local entropies below S/(NkB) < 0.1
[31, 32]. The challenge is now to realize such low en-
tropies with a ‘spinful’ system which has the spin degree
of freedom and suitable interactions for magnetic order-
ing.

Adiabatic cooling – Recently, we addressed this prob-
lem by introducing spin gradient demagnetization cool-
ing of ultracold atoms [7]. Two bosonic systems (spin-
up and spin-down) were prepared in the Mott insulat-
ing phase, but separated by a strong magnetic field gra-
dient. Reducing the gradient mixes the two spins and
reduces the temperature since kinetic entropy is trans-
ferred to spin entropy. However, beyond the proof-of-
principle demonstration, this scheme has the major draw-
back that a macroscopic transport of atoms through the
cloud is needed for the spin mixing. This issue has a
very elegant solution for fermions, where one can pre-
pare a band insulator and, by doubling the period of
the lattice using superlattices, adiabatically connect to
an anti-ferromagnetic phase at half filling (for each spin
component) [8–11]. For fermions, another form of adi-
abatic cooling has been recently realized by ramping a
lattice from isotropic to anisotropic tunneling [33], effec-
tively cooling magnetic correlations in one direction by
transferring entropy to the other spatial direction.

Here, we address the major missing piece for bosons,
how to adiabatically connect the low entropy Mott phase
to a magnetically ordered phase. The basic idea is to
combine spin gradient demagnetization cooling with spin-
dependent lattices [19–22]. Spin-dependent lattices can
be regarded as a (fictitious) alternating magnetic field
gradient [12], separating spin-up and spin-down on each
site, as shown in Fig. 1b. In such lattices, it is possible to
prepare two non-interacting Mott phases (for spin-up and
spin-down). The spin-up atoms reside on interstitial sites
with respect to the spin-down lattice. By ramping down
the spin-dependent lattice we can fully mix the two Mott
insulators. This requires only microscopic motion of the
atoms (by less than one lattice constant), in contrast to
the previously demonstrated spin gradient demagnetiza-
tion cooling.
Model and sketch of ground states – This simple con-

cept can be realised in a two-component Bose-Hubbard
model. Within the lowest Bloch band of the lattice, two-
component bosons denoted A and B are well described by
the two-component Bose-Hubbard Hamiltonian (~ ≡ 1),

H =− J
∑
〈j,l〉

(
â†j âl + b̂†j b̂l

)
+ UAB

∑
l

â†l âlb̂
†
l b̂l

+
UA
2

∑
l

â†l â
†
l âlâl +

UB
2

∑
l

b̂†l b̂
†
l b̂lb̂l, (1)

with âl, b̂l bosonic annihilation operators for species A
and B respectively, and where

∑
〈j,l〉 denotes a sum over

neighbouring sites. The adjustable microscopic separa-
tion between spin-up and spin-down sites is expressed as
a tunable inter-component on-site energy UAB , whereas
the tunnelling amplitude for each species is J and the
intra-component interactions are UA and UB .

In the regime of large intra-species interaction UA =
UB ≡ U � J , the two-species Mott Insulator with two
atoms per site can be described by a pseudo-spin triplet,
as depicted in Fig. 1a. In the case of unit filling with
NA = NB = L atoms and sites, model (1) can be mapped
on a effective spin S = 1 model in second order pertur-
bation theory [14]. The effective states of spin in the z
direction are proportional to a†a† |0〉 (Sz = +1), a†b† |0〉
(Sz = 0), and b†b† |0〉 (Sz = −1), as shown in Fig. 1a.
The effective model is a ferromagnetic Heisenberg lattice
or chain with Hamiltonian

Heff = −Jxyz
∑
〈j,l〉

ŜjŜl + u
∑
l

(Ŝzl )2, (2)

where u = U − UAB , Jxyz = 4J2/UAB , and we define

Ŝl =
(
Ŝxl , Ŝ

y
l , Ŝ

z
l

)
.

As shown in Fig. 1b, the magnetic state depends on
the interactions: for small inter-component repulsion, the
ground state is the S = 1, Sz = 0 state, whereas for inter-
component repulsion comparable to intra-component in-
teractions, the ground state is an xy-ferromagnet, where
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each site is in a superposition of the Sz = +1, 0,−1 states
[14]. The latter state features superfluid spin-transport
(or counterflow superfluidity) [15], whereas the former is
a spin insulator or spin Mott state. By varying the rel-
ative positions of the spin-dependent lattices, we tune
UAB , as shown in Fig. 1c, adiabatically connecting the
spin Mott state to the xy-ferromagnetic state [38]. We
thus realize a quantum phase transition from a gapped
state without any broken symmetries to a state which is
magnetically ordered via superexchange. This is a su-
perfluid to insulator transition in the spin domain. For
adiabatic cooling, the spin Mott state shares many ad-
vantageous features with the fermionic band insulator:
they are both gapped, and the spins are already fully
mixed, and only microscopic transport can connect the
gapped phase to magnetically ordered phases.

Validation – In the remainder of this paper, we vali-
date this idea with t-DMRG calculations. We calculate
ground-states and time-evolution in the full two-species
model (1), truncating the total number of particles al-
lowed on one site in the numerics to the value nmax [39],
and calculate spin-observables in the low-energy spin-
subspace. Spin-dependent lattices require near resonant
laser light (detuned by less than the fine-structure split-
ting), which causes heating by spontaneous light scatter-
ing. Therefore, very slow adiabatic ramps are not pos-
sible, but as we show in this paper, there are parameter
regimes where we can access the magnetically ordered
phase. Although the many-body state fidelity is low,
magnetic correlations still persist. Since the Mott phase
in 1D forms at much faster tunneling rates (U/J ≈ 3.3)
than in 3D (U/J ≈ 30), we choose a 1D system to allow
for faster ramps. The novel feature of our calculations
is the combination of exact solutions for adiabatic ramps
with a master equation for spontaneous emission of pho-
tons. Technical and other noise can also easily be added.
In this sense, our study is a major step towards fully re-
alistic simulations of experimental schemes for accessing
new quantum phases.

Phase diagram and spin correlations – In Fig. 2a, we
show a sketch of the phase diagram of model (1). A mean-
field calculation shows that the phase transition in the
spin picture occurs at u/Jxyz = 4 [35], or UAB/U = 1/2+

(
√

1− 64/(U/J)2)/2, shown as a thick black line in the
figure. In 1D making use of a DMRG calculation [34, 36],
we find a surprisingly large shift of the phase transition
from the mean field value, e.g., from UAB/U = 0.8 to
UAB/U = 0.942±0.001 for U/J = 10 [40]. The shading in
the figure represents the energy gap between the ground
and lowest excited states in a system with 12 particles on
6 lattice sites. This indicates where an adiabatic ramp
will be most difficult in a finite-size system.

To identify the xy-ferromagnetic ground-state, we
study spin-spin correlation functions of the form
〈S+
l S
−
l+j〉. Outside the xy-ferromagnetic regime, these

correlations decay exponentially, whereas they decay al-
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FIG. 2: Magnetic phase diagram and correlations – (a) Phase-
diagram for two-component bosons in a 1D optical lattice.
The color coding shows the gap in a small system with 12
particles on 6 lattice sites. The black solid line indicates
the mean-field phase transition from a spin Mott to an xy-
ferromagnetic phase. Our adiabatic ramp is along the or-
ange arrow. Along this path a phase transition to the xy-
ferromagnet occurs at UAB/U = 0.942 ± 0.001 [34]. (b) The
xy-ferromagnetic ground-state is characterized by the onset of
algebraically decaying 〈S+

i S
−
i+j〉 correlations (DMRG calcula-

tions for 100 bosons on 50 lattice sites, U = 10J , nmax = 4)
(c) The same type of correlations as in (b) but now ob-
tained with a time-dependent ramp with a final ramp speed
of dUAB/dt = 0.01J2 (t-DMRG calculation, nmax = 4).

gebraically in 1D on the xy-ferromagnetic side of the
transition. In Fig. 2b, we see clearly the qualitative
change in behaviour across the transition in the ground-
state spin-spin correlation functions, which could be de-
tected via noise correlation imaging [14].

Calculation of adiabatic ramps – We now validate the
ramp procedure for finite-size systems of the scale that
will typically be present in cold atom experiments. Be-
ginning in a spin Mott state with UAB ≈ 0, we initially in-
crease UAB rapidly at a constant rate of dUAB/dt = 1J2

to a value of UAB/U = 0.75. This rapid ramp is adia-
batic because of the large spectral gap. We then use a
second, slower ramp to the final state, again at a con-
stant rate. Note that such ramps could be significantly
further optimized by quantum control techniques, mak-
ing the estimates for timescales given here very conser-
vative. The correlation functions at the end time of the
ramp, ta are shown for different values of UAB in Fig. 2c,
and are almost identical to those in the ground-state up
to UAB = 0.98U .

For UAB > U , the ground state is a z−ferromagnet,
which for a constant number of particles amounts to
phase separation of the atoms. However, the sym-
metry change between the xy-ferromagnet and the
z−ferromagnet prevents this transition from occurring
adiabatically. We find that if we ramp across the tran-
sition, instead we produce a metastable excited state in
which the xy-ferromagnetic correlations persist, as shown
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FIG. 3: Many-body state fidelity F during adiabatic ramps –
(a) The fidelity of the adiabatically evolved state for different
ramp times in a system with 100 particles on 50 sites. The
fidelity reduces when crossing the phase-transition point at
UAB/U ∼ 0.94. For slower ramps, a larger fidelity can be
achieved. (b) The fidelity with which the xy-ferromagnetic
state at UAB/U = 0.98 can be prepared as function of the
preparation time and for different system sizes N . With in-
creasing N , a larger preparation time is required to reach high
state fidelities. (c/d) State fidelities for the UAB/U = 0.97
state in a system of 40 particles with competing processes.
(c) F for different magnetic field gradients ∆. (d) F in the
presence of spontaneous emissions with rates γ. The quantum
noise dramatically reduces the achievable state fidelities and
there is an optimum speed for the ramp [(a-c) nmax = 4, (d)
nmax = 3].

in Fig. 2c for UAB = 1.01U .
As a stringent test of adiabaticity, we calculate the fi-

delity of the quantum state throughout the ramp, defined
as

F = |〈ψgs(Uab)|ψ(t)〉|2, (3)

where |ψ(t)〉 denotes the time-evolved state during the
ramp, and |ψgs(Uab)〉 the corresponding ground-state.
We plot this in Fig. 3a as a function of UAB , for different
ta. We see that for all ramps, the fidelity is very high
until near the transition point, and for faster ramps falls
rapidly at the transition to the xy-ferromagnetic regime.
However, for long ramps, the state fidelity can approach
F = 1.

A key question in this context is how the timescale
required for an adiabatic ramp depends on system size.
We expect that for large systems, complete adiabaticity
will be impossible as the gap to excited states goes to
zero, and correlations will only be established over length
scales shorter than the system size. However, as shown
in Fig. 3b, it is possible for typical experimental system
sizes to reach almost unit fidelity for ramps of realistic
durations. For system sizes up to 50 lattice sites, a high-
fidelity final state can be produced with ramps that are
less than a second in duration.

Competition from decoherence via spontaneous emis-
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FIG. 4: Comparison of correlations and state fidelity in the
presence of spontaneous emission– 〈S+

i S
−
i+j〉 correlations for

the adiabatically prepared state with UAB/U = 0.97 in a
system with 40 particles on 20 sites, compared to the ground-
state correlation (dashed lines). (a/b): High spontaneous
emission rate, γ = 10−3J , (c/d) low spontaneous emission
rate γ = 10−4J . Panels (a) and (c) are for a faster ramp with
taJ = 38.9, (b) and (d) for the slower ramp with taJ = 117.5.
The state-fidelities are given in the plots.

sions – The natural question is how these ramps com-
pete with natural heating processes in the experiment.
This leads to a trade-off between using faster ramps to
avoid additional heating, and slower ramps to improve
adiabaticity. An example of this competition is shown
in Fig. 3c, where we show the final state fidelity if we
consider the original ramp and ground-states of (1), but

include a magnetic gradient potential term ∆
∑
l la
†
l al in

calculating the dynamics. As ∆ is increased, the optimal
ramps become shorter and achieve lower total fidelity, as
the state is rotated away from the original model. Note
that because the spin Mott state is robust against this
potential, the main influence of this term comes only at
the end of the ramp, reducing adiabaticity and dephasing
the xy-ferromagnetic ordering.

For spin-dependent lattices, the dominant heating
mechanism will be spontaneous emissions at an effective
scattering rate γ. For a typical setup with Rubidium
atoms, the dynamics will then be dominated by locali-
sation of particles that remain in the lowest band of the
lattice [29, 30], which can be described microscopically
by a master equation for the system density operator ρ
[30],

ρ̇ = − i

~
[H, ρ]− γ

2

∑
i

(niniρ+ ρnini − 2niρni) , (4)

with ni = a†iai + b†i bi. We solve this master equation by
combining t-DMRG methods with quantum trajectories
techniques [37] to obtain a complete microscopic descrip-
tion including heating. In Fig. 3d we then plot the fidelity
as a function of taJ for different γ values. Again, we see
a trade-off between heating and adiabaticity, leading to
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very low maximal fidelities for large heating rates.

While in the absence of heating, fidelities characterize
the adiabaticity and thus also the quality of the final mag-
netic correlations relatively well, this is not the case in
the presence of heating. In fact, the magnetic correlations
exhibit a surprising degree of robustness against heating
due to spontaneous emissions. In Fig. 4 we plot corre-
lation functions at the end of the ramps in the presence
of spontaneous emissions. Especially by comparing the
lower fidelity state in Fig. 4b and the higher fidelity state
in Fig. 4c, we see that the strength of correlations is dis-
connected from the fidelity. It is actually advantageous to
use longer ramps despite a reasonable increase in sponta-
neous emissions, and as demonstrated in Fig. 4d, strong
magnetic correlations are achievable for typical system
sizes after scattering of the order of 5 photons, despite
the large energy that would be introduced in comparison
with the superexchange energy J2/U .

Outlook – We have demonstrated that the spin Mott
state of two-component bosons can be used as a starting
point for producing sensitive, ordered many-body states
via adiabatic ramps, and at the same time that the com-
bination of t-DMRG and quantum trajectories can be
used to fully address possible experimental limitations,
and provide a microscopic guide to adiabatic state prepa-
ration. These experimental and theoretical techniques
can be immediately generalised to produce a rich array of
many-body states, including regimes accessible in mass-
imbalanced bosonic or Bose-Fermi mixtures.
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[35] J. Sólyom and T. A. L. Ziman, Phys. Rev. B 30, 3980

(1984).
[36] X.-L. Deng, D. Porras, and J. I. Cirac, Phys. Rev. A 72,

063407 (2005).
[37] A. J. Daley, Adv. Phys. 63, 77 (2014).



6

[38] Note that for Rb atoms, since all scattering lengths are
almost equal, UAB/U can be varied in a range between
0 and 1.

[39] Note that the quantitative variation from the full bosonic
model is very small, as discussed in the supplementary

material [34].
[40] Note that the quoted phase transition point is estimated

for nmax = 4 [34].

Supplementary material: Determination of the ground-state phase diagram

Here we present details on our determination of the ground-state phase-transition point via DMRG calculations
and compare results from the full two-species model (1) and the effective S = 1 spin-model (2). Because we are in the
balanced (equal particle number) regime NA = NB , the magnetization itself is always zero. Instead, we can determine
the transition point from fluctuations in the planar magnetization, δxy ≡

∑
l〈(Ŝxl )2〉+〈(Ŝyl )2〉, which we expect to have

a discontinuity in its second derivative with respect to UAB in the thermodynamic limit, where this quantity jumps
between a positive value and a negative value. For a finite system, this becomes a zero crossing, and we determine the
point at which this occurs numerically, in analogy e.g., to Ref. [36]. We note that this quantity should be experimentally

accessible since it is equivalent to the number of doubly occupied sites, (Ŝxl )2 + (Ŝyl )2 = â†l b̂
†
l |0〉 〈0| b̂lâl + 1.
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FIG. 5: Ground-state phase transition determination– DMRG phase-transition estimations in systems with various sizes N as
well as a finite-size scaling fit for: (a) The effective S = 1 spin model (2), (b) a two-species model (1) with nmax = 3; and (c)
the two-species model with nmax = 4. In each case, the transition point is determined by finding the value of UAB/U at which
a sign change occurs in the second derivative of the total fluctuations of the planar magnetization, d2δxy/dU

2
AB .

To determine the transition point we use DMRG techniques to calculate δxy for U = 10J and multiple values of UAB
with increments of 0.01J . Using a spline interpolation we then numerically estimate the zero-crossing of d2δxy/dU

2
AB .

We repeat this procedure for different system sizes of N = 14, 20, 30, 40, 50, 100 sites. Fig. 5 summarizes the results
of the estimated critical value of U cAB as function of N from our procedure for the different models.

We find that for N ≥ 30, with small error U cAB(N ) follows a power law of the form U cAB(N ) = U cAB(∞) + const.×
N−α. We use a fit to obtain estimates for U cAB(∞) with a statistical fitting error to our finite size scaling. To
summarize, for the different models we find: i) S=1 spin model, U cAB(∞) = 9.48± 0.01J ; ii) two-species model with
nmax = 3, U cAB(∞) = 9.49± 0.01J ; and iii) two-species model with nmax = 4, U cAB(∞) = 9.42± 0.01J .

The two-species model with nmax = 3 is closer to a hard-core model that is restricted to the effective spin-basis
and thus the estimated transition point is closer (identical within errors) to the one of the spin-model in this case.
We find a small quantitative variation of U cAB(N ) for nmax = 4, but the qualitative behaviour of the dynamics in the
effective spin sub-space is unaffected by variations of nmax.

In our main manuscript we use nmax = 4 except for the open system calculations, where to enable greater numerical
accuracy and efficiency, we restrict to a basis with nmax = 3. Based on the small quantitative shifts we observe for
the phase transition point, and our understanding of the dynamics obtained from the nmax = 3 case, we expect that
the quantitative variations from the full model should be comparable to our statistical errors.
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